Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Pediatrics ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38699801

BACKGROUND AND OBJECTIVE: Pediatric rare diseases are often life-limiting conditions and/or require constant caregiving. Investigators assessed the initial efficacy of the FAmily CEntered (FACE) pediatric advance care planning (pACP), FACE-Rare, intervention on families' quality of life. METHODS: A pilot-phase, single-blinded, intent-to-treat, randomized controlled clinical trial enrolled families from 1 pediatric quaternary hospital between 2021 and 2023. Intervention families received 3 weekly 60-minute (FACE-Rare pACP) sessions: (1) Carer Support Needs Assessment Tool or Action Plan, (2) Carer Support Needs Assessment Tol Action Plan Review, and (3) Pediatric Next Steps: Respecting Choices pACP. Controls received treatment as usual (TAU). Outcome measures were Beck Anxiety Inventory, Family Appraisal of Caregiving, Functional Assessment of Chronic Illness Therapy (FACIT)-Spirituality, and health care utilization. Generalized mixed effect models with γ response assessed the intervention effect at 3-month follow-up. RESULTS: Children (n = 21) were aged 1 to 10 years, 48% male, 24% Black; and 100% technology dependent. Primary family caregivers (n = 21) were aged 30 to 43 years, 19% male, 19% Black; and 27% household income below the Federal poverty level. Dyads underwent 1:1 randomization: 9 to FACE-Rare and 12 to TAU. TAU caregivers reported statistically lower meaning and peace than FACE-Rare caregivers (0.9, P = .03, confidence interval [CI]: 0.75-0.99). Black caregivers reported significantly less caregiver distress (0.7, P = .04, CI: 0.47-0.98) than non-Black caregivers. Poor families reported more anxiety (3.5, P = .002, CI: 1.62-7.94), more caregiver strain (1.2, P = .006, CI: 1.07-1.42); and less family well-being (0.8, P = .02, CI: 0.64-0.95). CONCLUSIONS: FACE®-Rare was feasible, acceptable, safe, and demonstrated initial efficacy, providing greater feelings of meaning and peace to caregivers. Poverty impacted well-being. A multisite trial is needed to determine generalizability.

2.
JIMD Rep ; 65(3): 156-162, 2024 May.
Article En | MEDLINE | ID: mdl-38736636

Type II D-2-Hydroxyglutaric aciduria (T2D2HGA) is caused by a gain-of-function pathogenic variant in Isocitrate Dehydrogenase 2 (IDH2). Patients with T2D2HGA commonly present with developmental delay, seizures, cardiomyopathy, and arrhythmias. The recently approved IDH2-inhibitor Enasidenib targets the p.Arg140Gln pathogenic IDH2 variant and decreases production of D2HGA. We present a 7-year-old female with T2D2HGA due to the p.Arg140Gln variant. She was diagnosed at 3-years-old after presenting with global developmental delay, leukoencephalopathy, communicating hydrocephalus, seizures, and dilated cardiomyopathy. At age 3 years 11 months, 50 mg Enasidenib daily was initiated. Primary outcomes included seizure frequency, hospital admissions, development, and cardiac structure. Laboratories were monitored biweekly for common Enasidenib side effects. Our patient tolerated Enasidenib well. Urine 2-HGA decreased significantly from 244 mg/g creatinine to undetectable within 2 weeks of treatment. Inpatient admissions decreased from 8 during the 2 years preceding treatment to 1 during treatment. She has been seizure-free since Enasidenib initiation. Echocardiography showed improvement in dilated cardiomyopathy with normal left ventricular systolic function. Developmental assessment demonstrated improvements in gross motor, fine motor, language, and socialization domains. Treatment was complicated by mild elevations in alanine transaminase (118 IU/L, range 0-28) and creatine kinase (334 U/L, range 45-198) that resolved by decreasing Enasidenib dosing frequency to three times weekly. Enasidenib is a viable treatment for Type II D2HGA with benefits including developmental gains, fewer acute medical interventions, and cardiomyopathy improvement. While drug-induced hepatitis is a novel adverse effect of Enasidenib, it can be ameliorated by decreasing dose frequency.

3.
medRxiv ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38645094

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.

4.
medRxiv ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38645225

Pyruvate dehydrogenase complex deficiency (PDCD) is a disorder of mitochondrial metabolism that is caused by pathogenic variants in multiple genes, including PDHA1. Typical neonatal brain imaging findings in PDCD have been described, with a focus on malformative features and chronic encephaloclastic changes. However, fetal brain MRI imaging in confirmed PDCD has not been comprehensively described. We sought to demonstrate the prenatal neurological and systemic manifestations of PDCD determined by comprehensive fetal imaging and genomic sequencing. All fetuses with a diagnosis of genetic PDCD who had undergone fetal MRI were included in the study. Medical records, imaging data, and genetic testing results were reviewed and reported descriptively. Ten patients with diagnosis of PDCD were included. Most patients had corpus callosum dysgenesis, abnormal gyration pattern, reduced brain volumes, and periventricular cystic lesions. One patient had associated intraventricular hemorrhages. One patient had a midbrain malformation with aqueductal stenosis and severe hydrocephalus. Fetuses imaged in the second trimester were found to have enlargement of the ganglionic eminences with cystic cavitations, while those imaged in the third trimester had germinolytic cysts. Fetuses with PDCD have similar brain MRI findings to neonates described in the literature, although some of these findings may be subtle early in pregnancy. Additional features, such as cystic cavitations of the ganglionic eminences, are noted in the second trimester in fetuses with PDCD, and these may represent a novel early diagnostic marker for PDCD. Using fetal MRI to identify these radiological hallmarks to inform prenatal diagnosis of PDCD may guide genetic counseling, pregnancy decision-making, and neonatal care planning.

5.
Cytotherapy ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38613540

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.

7.
Mol Genet Metab ; 142(1): 108453, 2024 May.
Article En | MEDLINE | ID: mdl-38522179

Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.


Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/therapy , Rare Diseases/epidemiology , Longitudinal Studies , United States , Prospective Studies
8.
Pediatr Radiol ; 53(9): 1941-1950, 2023 08.
Article En | MEDLINE | ID: mdl-37183230

BACKGROUND: Fetal ventriculomegaly is a source of apprehension for expectant parents and may present prognostic uncertainty for physicians. Accurate prenatal counseling requires knowledge of its cause and associated findings as the differential diagnosis is broad. We have observed an association between ventriculomegaly and incomplete hippocampal inversion. OBJECTIVE: To determine whether ventricular size is related to incomplete hippocampal inversion. MATERIALS AND METHODS: We retrospectively evaluated pre- and postnatal brain MRIs in normal subjects (mean GA, 31 weeks; mean postnatal age, 27 days) and patients with isolated ventriculomegaly (mean GA, 31 weeks; mean postnatal age, 68 days) at a single academic medical center. Lateral ventricular diameter, multiple qualitative and quantitative markers of hippocampal inversion, and evidence of intraventricular hemorrhage were documented. RESULTS: Incomplete hippocampal inversion and ventricular size were associated in both normal subjects (n=51) and patients with ventriculomegaly (n=32) (P<0.05). Severe ventriculomegaly was significantly associated with adverse clinical outcome in postnatal (P=0.02) but not prenatal (P=0.43) groups. In all additional cases of isolated ventriculomegaly, clinical outcome was normal over the time of assessment (mean 1±1.9 years; range 0.01 to 10 years). CONCLUSION: Lateral ventricular atrial diameter and incomplete hippocampal inversion are associated. Less hippocampal inversion correlates with larger atria. For every 1-mm increase in fetal ventricular size, the odds of incomplete hippocampal inversion occurring increases by a factor of 1.6 in normal controls and 1.4 in patients with ventriculomegaly.


Atrial Fibrillation , Hydrocephalus , Female , Humans , Infant , Pregnancy , Atrial Fibrillation/complications , Hydrocephalus/diagnostic imaging , Prenatal Diagnosis , Retrospective Studies , Rotation , Ultrasonography, Prenatal
10.
BMJ Support Palliat Care ; 12(e5): e705-e714, 2022 Nov.
Article En | MEDLINE | ID: mdl-31345846

OBJECTIVE: To develop and pilot test a palliative care intervention for family caregivers of children with rare diseases (FAmily-CEntered pediatric Advance Care Planning-Rare (FACE-Rare)). METHODS: FACE-Rare development involved an iterative, family-guided process including review by a Patient and Family Advisory Council, semistructured family interviews and adaptation of two evidence-based person-centred approaches and pilot testing their integration. Eligible families were enrolled in FACE-Rare (the Carer Support Needs Assessment Tool (CSNAT) Approach Paediatric sessions 1 and 2; plus Respecting Choices Next Steps pACP intervention sessions 3 and 4). Satisfaction, quality of communication and caregiver appraisal were assessed. RESULTS: Parents were mean age 40 years, and children 7 years. Children's diseases were rare enough that description would identify patients. All children were technology dependent. Telemedicine, used with four of seven families, was an effective engagement strategy and decreased subject burden. Families found FACE-Rare valuable following a strategy that first elicited palliative care needs and a support plan. Eight families were approached for pilot testing. Of the seven mothers who agreed to participate, six began session 1, and of those, 100% completed: all four FACE-Rare sessions, baseline and 2-week postintervention assessments, and a written pACP which described their preferences for medical decision-making to share with their providers. 100% reported FACE-Rare was helpful. The top three CSNAT concerns were: knowing what to expect in the future, having enough time for yourself and financial issues. Benchmarks were achieved and questionnaires were acceptable to parents and thus feasible to use in a larger trial. CONCLUSIONS: FACE-Rare provides an innovative, structured approach for clinicians to deliver person-centred care.


Advance Care Planning , Caregivers , Humans , Adolescent , Child , Adult , Palliative Care , Rare Diseases/therapy , Needs Assessment
13.
Prenat Diagn ; 41(6): 778-790, 2021 May.
Article En | MEDLINE | ID: mdl-33522008

OBJECTIVE: Report a single-center 12-year experience in the fetal diagnosis of diencephalic-mesencephalic junction dysplasia (DMJD) to expand the phenotype with Magnetic resonance imaging (MRI)-based classification, evaluate genetic etiologies, and ascertain outcomes. METHODS: Retrospective medical record and imaging review of all fetal MRI exams with DMJD were performed at our institution. RESULTS: Thirty-three pregnancies with fetal MRI findings of DMJD at 24 (18-37) weeks gestational age were studied; 70% were referred for fetal hydrocephalus. Three fetal MRI patterns were recognized. Type A (butterfly/hypothalamus-midbrain union) was seen in two cases (6%), Type B (partial thalamus-midbrain union) in 22 fetuses (70%), and Type C (complete/near complete midbrain-thalamic continuity) in nine fetuses (24%). L1CAM mutations were identified in four cases, and biallelic VRK1 variants in another. Among 14 live-born cases, 11 survived infancy, and 10 underwent postnatal brain MRI which confirmed the fetal MRI diagnosis in all but one case. Development was delayed in all surviving infants, most with additional neurological sequelae. CONCLUSIONS: DMJD may be identified by prenatal MRI as early as 18 weeks gestation. We propose three distinct phenotypic forms of DMJD, Types A-C. Next-generation sequencing provides an underlying molecular diagnosis in some patients, but further studies on associated genetic diagnoses and clinical outcomes are indicated.


Fetus/abnormalities , Genetic Diseases, Inborn/diagnosis , Outcome Assessment, Health Care/statistics & numerical data , Adult , Female , Fetus/diagnostic imaging , Genetic Diseases, Inborn/epidemiology , Gestational Age , Humans , Magnetic Resonance Imaging/methods , Outcome Assessment, Health Care/methods , Phenotype , Pregnancy , Prenatal Diagnosis/methods , Prenatal Diagnosis/statistics & numerical data , Retrospective Studies
14.
Am J Med Genet A ; 185(1): 68-72, 2021 01.
Article En | MEDLINE | ID: mdl-33051968

The national importance of telemedicine for safe and effective patient care has been highlighted by the current COVID-19 pandemic. Prior to the 2020 pandemic the Division of Genetics and Metabolism piloted a telemedicine program focused on initial and follow-up visits in the patients' home. The goals were to increase access to care, decrease missed work, improve scheduling, and avoid the transport and exposure of medically fragile patients. Visits were conducted by physician medical geneticists, genetic counselors, and biochemical dietitians, together and separately. This allowed the program to develop detailed standard operating procedures. At the onset of the COVID-19 pandemic, this pilot-program was deployed by the full team of 22 providers in one business day. Two physicians remained on-site for patients requiring in-person evaluations. This model optimized patient safety and workforce preservation while providing full access to patients during a pandemic. We provide initial data on visit numbers, types of diagnoses, and no-show rates. Experience in this implementation before and during the pandemic has confirmed the effectiveness and value of telemedicine for a highly complex medical population. This program is a model that can and will be continued well-beyond the current crisis.


COVID-19/epidemiology , Delivery of Health Care/organization & administration , Endocrinology/organization & administration , Genetics, Medical/organization & administration , Models, Organizational , Pandemics , Telemedicine/organization & administration , Adolescent , Adult , Child , Child, Preschool , Delivery of Health Care/methods , Delivery of Health Care/standards , Endocrinology/education , Female , Genetic Counseling/methods , Genetic Counseling/organization & administration , Genetic Counseling/standards , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/therapy , Genetic Testing/methods , Genetic Testing/standards , Genetics, Medical/education , Humans , Implementation Science , Infant , Infant, Newborn , Internship and Residency/methods , Internship and Residency/organization & administration , Internship and Residency/standards , Male , Metabolic Diseases/epidemiology , Metabolic Diseases/therapy , Middle Aged , Patient Safety , Pilot Projects , Program Evaluation , Telemedicine/methods , Young Adult
15.
Mov Disord ; 36(6): 1342-1352, 2021 06.
Article En | MEDLINE | ID: mdl-33200489

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) currently has no approved treatments. OBJECTIVES: The Fosmetpantotenate Replacement Therapy pivotal trial examined whether treatment with fosmetpantotenate improves PKAN symptoms and stabilizes disease progression. METHODS: This randomized, double-blind, placebo-controlled, multicenter study evaluated fosmetpantotenate, 300 mg oral dose three times daily, versus placebo over a 24-week double-blind period. Patients with pathogenic variants of PANK2, aged 6 to 65 years, with a score ≥6 on the PKAN-Activities of Daily Living (PKAN-ADL) scale were enrolled. Patients were randomized to active (fosmetpantotenate) or placebo treatment, stratified by weight and age. The primary efficacy endpoint was change from baseline at week 24 in PKAN-ADL. RESULTS: Between July 23, 2017, and December 18, 2018, 84 patients were randomized (fosmetpantotenate: n = 41; placebo: n = 43); all 84 patients were included in the analyses. Six patients in the placebo group discontinued treatment; two had worsening dystonia, two had poor compliance, and two died of PKAN-related complications (aspiration during feeding and disease progression with respiratory failure, respectively). Fosmetpantotenate and placebo group PKAN-ADL mean (standard deviation) scores were 28.2 (11.4) and 27.4 (11.5) at baseline, respectively, and were 26.9 (12.5) and 24.5 (11.8) at week 24, respectively. The difference in least square mean (95% confidence interval) at week 24 between fosmetpantotenate and placebo was -0.09 (-1.69 to 1.51; P = 0.9115). The overall incidence of treatment-emergent serious adverse events was similar in the fosmetpantotenate (8/41; 19.5%) and placebo (6/43; 14.0%) groups. CONCLUSIONS: Treatment with fosmetpantotenate was safe but did not improve function assessed by the PKAN-ADL in patients with PKAN. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Pantothenate Kinase-Associated Neurodegeneration , Activities of Daily Living , Double-Blind Method , Humans , Pantothenate Kinase-Associated Neurodegeneration/drug therapy , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenic Acid/analogs & derivatives
16.
Am J Med Genet A ; 185(2): 500-507, 2021 02.
Article En | MEDLINE | ID: mdl-33300687

Current rhabdomyolysis treatment guidelines vary based on the etiology and diagnosis, yet many cases evade conclusive diagnosis. In these cases, treatment options remain largely limited to fluids and supportive therapy. We present two cases of acute rhabdomyolysis diagnosed in the emergency department: a 5-year-old boy with sudden onset bilateral flank pain, and a 13-year-old boy with 2-3 days of worsening pectoral and shoulder pain. Each patient had a prior similar episode requiring hospitalization in the past. The 5-year-old had no inciting trauma or trigger, medication use, or illness. The 13-year-old previously had an upper respiratory infection during the week prior and had been strenuously exercising at the time of onset. Genetic testing results were unknown for both patients during their hospitalizations, and insurance and other barriers led to delay. Later results for the first patient revealed a heterozygous deletion in intron 19 on the LPIN1 gene interpreted as a variant of unknown significance. During their hospitalizations, both children were started on intravenous (i.v.) fluids, and creatine kinase (CK) initially trended downward, but then began to rise or plateau. After reviewing the cases, prior literature, and anecdotal evidence of benefit from corticosteroid therapy in rhabdomyolysis with our consultant metabolic physicians, dexamethasone was initiated. In both patients, dexamethasone use correlated with relief of patient symptoms, significantly decreased CK value, and our ability to discharge these patients home quickly. Our cases, discussion, and literature review all lead to the consideration of the use of dexamethasone in conjunction with standard therapy for acute rhabdomyolysis.


Creatine Kinase/genetics , Dexamethasone/administration & dosage , Myoglobinuria/drug therapy , Phosphatidate Phosphatase/genetics , Adolescent , Adrenal Cortex Hormones/administration & dosage , Child, Preschool , Gene Deletion , Heterozygote , Humans , Male , Myoglobinuria/genetics , Myoglobinuria/pathology , Pediatrics
17.
Genet Med ; 23(4): 653-660, 2021 04.
Article En | MEDLINE | ID: mdl-33299146

PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."


Brain Diseases , Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Synaptosomal-Associated Protein 25/genetics , Child, Preschool , Epilepsy/genetics , Humans , Neurodevelopmental Disorders/genetics , Phenotype
18.
Am J Hum Genet ; 107(2): 352-363, 2020 08 06.
Article En | MEDLINE | ID: mdl-32693025

MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.


Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/genetics , Growth Disorders/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Diseases, Inborn/genetics , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Male , Microcephaly/genetics , Middle Aged , Phenotype , Young Adult
19.
Ann Neurol ; 88(2): 264-273, 2020 08.
Article En | MEDLINE | ID: mdl-32342562

OBJECTIVE: Genome sequencing (GS) is promising for unsolved leukodystrophies, but its efficacy has not been prospectively studied. METHODS: A prospective time-delayed crossover design trial of GS to assess the efficacy of GS as a first-line diagnostic tool for genetic white matter disorders took place between December 1, 2015 and September 27, 2017. Patients were randomized to receive GS immediately with concurrent standard of care (SoC) testing, or to receive SoC testing for 4 months followed by GS. RESULTS: Thirty-four individuals were assessed at interim review. The genetic origin of 2 patient's leukoencephalopathy was resolved before randomization. Nine patients were stratified to the immediate intervention group and 23 patients to the delayed-GS arm. The efficacy of GS was significant relative to SoC in the immediate (5/9 [56%] vs 0/9 [0%]; Wild-Seber, p < 0.005) and delayed (control) arms (14/23 [61%] vs 5/23 [22%]; Wild-Seber, p < 0.005). The time to diagnosis was significantly shorter in the immediate-GS group (log-rank test, p = 0.04). The overall diagnostic efficacy of combined GS and SoC approaches was 26 of 34 (76.5%, 95% confidence interval = 58.8-89.3%) in <4 months, greater than historical norms of <50% over 5 years. Owing to loss of clinical equipoise, the trial design was altered to a single-arm observational study. INTERPRETATION: In this study, first-line GS provided earlier and greater diagnostic efficacy in white matter disorders. We provide an evidence-based diagnostic testing algorithm to enable appropriate clinical GS utilization in this population. ANN NEUROL 2020;88:264-273.


Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Sequence Analysis, DNA/methods , Child , Child, Preschool , Cross-Over Studies , Female , Humans , Infant , Male , Prospective Studies , White Matter/pathology
20.
J Perinatol ; 39(2): 184-192, 2019 02.
Article En | MEDLINE | ID: mdl-30301940

OBJECTIVE: To evaluate the Specific Test of Early Infant Motor Performance (STEP), a rapid screening test of preterm infants at risk for developmental delay. STUDY DESIGN: We prospectively studied 23 preterm infants' performance on the STEP and the Test of Infant Motor Performance (TIMP) at term and 3 months, and on the Bayley-III at 12 months. We investigated the psychometric qualities of the STEP and determined STEP cutoff scores for low and high-performing infants. RESULTS: STEP scores at term and 3 months strongly correlate with 12-month Bayley-III gross motor and cognitive scaled scores, while TIMP scores did not. The STEP showed excellent reliability and required 6-10 min to administer. CONCLUSION: STEP is a short, easy to administer, early developmental assessment with unique scoring that emphasizes qualitative and quantitative aspects of muscle tone in movements and predicts 12-month Bayley gross motor and cognitive scaled scores.


Cerebral Palsy/diagnosis , Cognition Disorders/diagnosis , Developmental Disabilities/diagnosis , Motor Disorders/diagnosis , Premature Birth/physiopathology , Cerebral Palsy/etiology , Cognition Disorders/etiology , Developmental Disabilities/etiology , Female , Humans , Infant , Infant, Newborn , Male , Motor Disorders/etiology , Neuropsychological Tests , Prospective Studies , Psychometrics/instrumentation , Reproducibility of Results
...